Gaussian Mixture Model
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Gaussian Mixture Model (GMM) is the probabilistic model, it works well with the classification and parameter estimation strategy. In this Maximum Likelihood Estimation (MLE) based on Expectation Maximization (EM) is being used for the parameter estimation approach and the estimated parameters are being used for the training and the testing of the images for their normality and the abnormality. With the mean and the covariance calculated as the parameters they are used in the Gaussian Mixture Model (GMM) based training of the classifier. Support Vector Machine a discriminative classifier and the Gaussian Mixture Model a generative model classifier are the two most popular techniques used in this work. The performance of the classification strategy of both the classifiers used have a better proficiency when compared to the other classifiers. By combining the SVM and GMM we could be able to classify at a better level since estimating the parameters through the GMM has a very few amount of features and hence it is not needed to use any of the feature reduction techniques. von Kumar, A. Vignesh
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
A. Vignesh Kumar, Completed M.E(CSE) & doing Ph.D from Anna University,Chennai and having 5 Years of Academic Experience.
- hardcover
- 368 Seiten
- Erschienen 2005
- Elsevier Science
- Kartoniert
- 239 Seiten
- Erschienen 2015
- Springer
- Gebunden
- 320 Seiten
- Erschienen 2014
- Springer
- Gebunden
- 410 Seiten
- Erschienen 2013
- Springer
- Gebunden
- 266 Seiten
- Erschienen 2012
- Springer
- Gebunden
- 347 Seiten
- Erschienen 2017
- Springer
- Gebunden
- 498 Seiten
- Erschienen 2015
- Springer
- paperback -
- Erschienen 1981
- Pannonia
- paperback
- 1568 Seiten
- Erschienen 2000
- Edition Lipp
- Gebunden
- 368 Seiten
- Erschienen 2015
- Springer
- Gebunden
- 1096 Seiten
- Erschienen 2017
- Springer



