
Continuous Transformations in Analysis
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The general objective of this treatise is to give a systematic presenta tion of some of the topological and measure-theoretical foundations of the theory of real-valued functions of several real variables, with particular emphasis upon a line of thought initiated by BANACH, GEOCZE, LEBESGUE, TONELLI, and VITALI. To indicate a basic feature in this line of thought, let us consider a real-valued continuous function I(u) of the single real variable tt. Such a function may be thought of as defining a continuous translormation T under which x = 1 (u) is the image of u. About thirty years ago, BANACH and VITALI observed that the fundamental concepts of bounded variation, absolute continuity, and derivative admit of fruitful geometrical descriptions in terms of the transformation T: x = 1 (u) associated with the function 1 (u). They further noticed that these geometrical descriptions remain meaningful for a continuous transformation T in Euclidean n-space Rff, where T is given by a system of equations of the form 1-/(1 ff) X-I U, . . . ,tt ,. ", and n is an arbitrary positive integer. Accordingly, these geometrical descriptions can be used to define, for continuous transformations in Euclidean n-space Rff, n-dimensional concepts 01 bounded variation and absolute continuity, and to introduce a generalized Jacobian without reference to partial derivatives. These ideas were further developed, generalized, and modified by many mathematicians, and significant applications were made in Calculus of Variations and related fields along the lines initiated by GEOCZE, LEBESGUE, and TONELLI. von Rado, Tibor und Reichelderfer, Paul V.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- hardcover
- 598 Seiten
- Erschienen 2024
- Springer
- Gebunden
- 2844 Seiten
- Erschienen 2018
- C.H.Beck
- Gebunden
- 2228 Seiten
- Erschienen 2021
- C.H.Beck
- hardcover
- 424 Seiten
- Erschienen 2001
- Oxford Univ Pr
- Gebunden
- 2143 Seiten
- Erschienen 2017
- C.H.Beck
- Kartoniert
- 301 Seiten
- Erschienen 2012
- Stollfuß Medien
- hardcover
- 1290 Seiten
- Erschienen 2024
- C.H.Beck
- Leinen
- 368 Seiten
- Erschienen 2022
- C.H. Beck Verlag
- paperback
- 168 Seiten
- Erschienen 2018
- Waxmann Verlag
- Kartoniert
- 339 Seiten
- Erschienen 2004
- Metropolis
- Gebunden
- 404 Seiten
- Erschienen 2012
- C.F. Müller
- Gebunden
- 400 Seiten
- Erschienen 2014
- V&R unipress
- hardcover
- 1859 Seiten
- Erschienen 2014
- Nomos
- Gebunden
- 1899 Seiten
- Erschienen 2019
- Nomos
- hardcover
- 1027 Seiten
- Erschienen 2009
- Schäffer-Poeschel