
Computing Statistics under Interval and Fuzzy Uncertainty
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area. Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy. This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics. von Nguyen, Hung T. und Kreinovich, Vladik und Wu, Berlin und Xiang, Gang
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
- Hardcover -
- Erschienen 2017
- Springer
- paperback
- 328 Seiten
- Erschienen 1994
- Springer
- hardcover
- 208 Seiten
- Erschienen 2023
- Wiley-ISTE
- hardcover
- 514 Seiten
- Erschienen 1982
- Birkhäuser Verlag
- Kartoniert
- 272 Seiten
- Erschienen 1995
- Springer
- Gebundene Ausgabe -
- Erschienen 1995
- Teubner Verlag
- Hardcover
- 480 Seiten
- Erschienen 1980
- Wiley-Interscience
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer