
Evolutionary Multi-objective Optimization in Uncertain Environments
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined. The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties. von Goh, Chi-Keong und Tan, Kay Che
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- hardcover
- 456 Seiten
- Erschienen 1995
- Wiley VCH
- Hardcover -
- Erschienen 2017
- Springer
- hardcover
- 576 Seiten
- Erschienen 1997
- Springer
- Gebunden
- 387 Seiten
- Erschienen 1998
- Springer
- Gebunden
- 300 Seiten
- Erschienen 2013
- Springer
- hardcover
- 562 Seiten
- Erschienen 1995
- CRC Press Inc
- Gebunden
- 400 Seiten
- Erschienen 2011
- Springer
- Hardcover
- 376 Seiten
- Erschienen 1996
- Cambridge University Press
- hardcover
- 732 Seiten
- Erschienen 2004
- Cambridge University Press
- Hardcover
- 352 Seiten
- Erschienen 2000
- Oxford University Press
- hardcover
- 834 Seiten
- Erschienen 2006
- Pearson
- Gebunden
- 308 Seiten
- Erschienen 2016
- Wiley-VCH