
Differential Forms and Applications
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces. von Do Carmo, Manfredo P.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 328 Seiten
- Erschienen 2023
- Wspc
- Taschenbuch
- 232 Seiten
- Erschienen 2003
- ICP
- Hardcover
- 348 Seiten
- Erschienen 2013
- Springer
- Hardcover
- 140 Seiten
- Erschienen 2009
- Springer
- hardcover
- 229 Seiten
- Erschienen 1972
- Springer
- Hardcover
- 440 Seiten
- Erschienen 1987
- Vieweg + Teubner
- paperback
- 244 Seiten
- Erschienen 1978
- Springer Berlin Heidelberg
- hardcover
- 560 Seiten
- Erschienen 2012
- Wiley