
Bayesian Full Information Structrual Analysis
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
1 1. Statement of the problem. Bayes' theorem provides a very powerful tool for statistical inference, especially when pooling information from different sources is appropriate. Thus, prior information resulting from economic theory and/or from previous (real or hypothetical) samples can be combined with the information embodied in new observations; and this operation can be performed formally, within a rigorous mathematical framework. To introduce the Bayesian analysis of the simultaneous equations model, we shall base our presentation in the very convenient exposition given by Dreze in his presidential adress to the . S' 2 C f Second World ongress 0 the Econometr1c oC1ety. The Bayesian method in statistics is usually presented as follows Consider the joint probability density function f(x.e) defined on the product space X x9, where X = {x} denotes the sample space, and e = {e} denotes the parameter space, If we decompose the joint density f(x,e) in a conditional density f(x/e) and a marginal lThe beginning of this section reviews some very well known proposi tions of Bayesian analysis. Those who are familiar with the subject can skip this part, and start with p.5. 2J.H.Dreze. "Econometrics and Decision Theory". Presidential adress delivered at the Second World Congress of the Econometric Society. von Morales, J. A.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Kartoniert
- 392 Seiten
- Erschienen 2007
- Springer
- paperback
- 390 Seiten
- Erschienen 2016
- Routledge
- Taschenbuch
- 432 Seiten
- Erschienen 2011
- Routledge
- Kartoniert
- 363 Seiten
- Erschienen 2017
- Sage Publications, Inc
- Hardcover
- 184 Seiten
- Erschienen 2008
- Cambridge University Press
- paperback
- 224 Seiten
- Erschienen 1980
- Springer
- hardcover
- 580 Seiten
- Erschienen 2014
- Taylor & Francis Ltd