
Approximate Quantum Markov Chains
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple matrix inequality can be extended to more than three matrices. Finally, we carefully discuss the properties of approximate quantum Markov chains and their implications. The book is aimed to graduate students who want to learn about approximate quantum Markov chains as well as more experienced scientists who want to enter this field. Mathematical majority is necessary, but no prior knowledge of quantum mechanics is required. von Sutter, David
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- paperback
- 108 Seiten
- Erschienen 1972
- Springer Berlin Heidelberg
- Hardcover -
- Erschienen 2010
- Springer
- hardcover
- 232 Seiten
- Erschienen 2012
- Elsevier
- hardcover
- 520 Seiten
- Erschienen 1987
- Springer
- Gebunden
- 212 Seiten
- Erschienen 2018
- WSPC (EUROPE)
- Hardcover -
- Erschienen 2010
- Oxford University Press
- Gebunden
- 206 Seiten
- Erschienen 2010
- Springer
- Hardcover
- 152 Seiten
- Erschienen 2022
- CRC Press
- Hardcover
- 576 Seiten
- Erschienen 1986
- Wiley-Interscience
- Gebunden
- 284 Seiten
- Erschienen 2014
- Springer
- paperback
- 264 Seiten
- Erschienen 2013
- Springer
- paperback
- 676 Seiten
- Erschienen 1999
- Teubner Verlag
- hardcover
- 588 Seiten
- Erschienen 2012
- De Gruyter
- Hardcover -
- Erschienen 2009
- De Gruyter
- Hardcover
- 260 Seiten
- Erschienen 2011
- ICP
- Hardcover -
- Erschienen 1997
- Springer