Boundary Integral Equations on Contours with Peaks
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
An equation of the form ??(x)? K(x,y)?(y)d?(y)= f(x),x?X, (1) X is called a linear integral equation. Here (X,?)isaspacewith ?-?nite measure ? and ? is a complex parameter, K and f are given complex-valued functions. The function K is called the kernel and f is the right-hand side. The equation is of the ?rst kind if ? = 0 and of the second kind if ? = 0. Integral equations have attracted a lot of attention since 1877 when C. Neumann reduced the Dirichlet problem for the Laplace equation to an integral equation and solved the latter using the method of successive approximations. Pioneering results in application of integral equations in the theory of h- monic functions were obtained by H. Poincar¿ e, G. Robin, O. H¿ older, A.M. L- punov, V.A. Steklov, and I. Fredholm. Further development of the method of boundary integral equations is due to T. Carleman, G. Radon, G. Giraud, N.I. Muskhelishvili,S.G.Mikhlin,A.P.Calderon,A.Zygmundandothers. Aclassical application of integral equations for solving the Dirichlet and Neumann boundary value problems for the Laplace equation is as follows. Solutions of boundary value problemsaresoughtin the formof the doublelayerpotentialW? andofthe single layer potentialV?. In the case of the internal Dirichlet problem and the ext- nal Neumann problem, the densities of corresponding potentials obey the integral equation ???+W? = g (2) and ? ???+ V? = h (3) ?n respectively, where ?/?n is the derivative with respect to the outward normal to the contour. von Mazya, Vladimir
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- perfect -
- Erschienen 1984
- Bibliogr. Inst. + Brockha,
- hardcover
- 863 Seiten
- Erschienen 2019
- Springer
- Kartoniert
- 165 Seiten
- Erschienen 2020
- De Gruyter
- paperback
- 308 Seiten
- Erschienen 2014
- Springer Spektrum
- paperback
- 244 Seiten
- Erschienen 1978
- Springer Berlin Heidelberg
- Kartoniert
- 204 Seiten
- Erschienen 2007
- Springer
- hardcover -
- Erschienen 1996
- Pearson
- Kartoniert
- 272 Seiten
- Erschienen 2004
- Springer
- Gebunden
- 488 Seiten
- Erschienen 2009
- Springer
- Hardcover
- 456 Seiten
- Erschienen 2000
- Cornelsen Lernhilfen
- paperback
- 444 Seiten
- Erschienen 2012
- Springer
- Hardcover -
- Erschienen 2002
- Vieweg+Teubner Verlag
- hardcover
- 1876 Seiten
- Erschienen 2011
- Chapman & Hall/CRC
- Kartoniert
- 396 Seiten
- Erschienen 2019
- Springer Spektrum
- paperback
- 256 Seiten
- Erschienen 2025
- Birkhäuser
- Hardcover
- 460 Seiten
- Erschienen 2013
- Springer Vieweg
- hardcover
- 366 Seiten
- Erschienen 2022
- Birkhäuser




