
Applied Analytics through Case Studies Using SAS and R
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Examine business problems and use a practical analytical approach to solve them by implementing predictive models and machine learning techniques using SAS and the R analytical language. This book is ideal for those who are well-versed in writing code and have a basic understanding of statistics, but have limited experience in implementing predictive models and machine learning techniques for analyzing real world data. The most challenging part of solving industrial business problems is the practical and hands-on knowledge of building and deploying advanced predictive models and machine learning algorithms. Applied Analytics through Case Studies Using SAS and R is your answer to solving these business problems by sharpening your analytical skills. What You'll Learn Understand analytics and basic data concepts Use an analytical approach to solve Industrial business problems Build predictive model with machine learning techniques Create and apply analytical strategies Who This Book Is For Data scientists, developers, statisticians, engineers, and research students with a great theoretical understanding of data and statistics who would like to enhance their skills by getting practical exposure in data modeling. von Gupta, Deepti
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Deepti Gupta completed her MBA in Finance and PGPM in operation research in 2010. She has worked with KPMG and IBM private limited as Data Scientist and is currently working as a data science freelancer. Deepti has extensive experience in predictive modeling and machine learning with an expertise in SAS and R. Deepti has developed data science courses, delivered data science trainings, and conducted workshops for both corporate and academic institutions. She has written multiple blogs and white papers. Deepti has a passion for mentoring budding data scientists.
- Hardcover
- 496 Seiten
- Erschienen 2023
- Wiley
- paperback
- 640 Seiten
- Erschienen 2008
- Sage Publications, Inc
- Gebunden
- 456 Seiten
- Erschienen 2017
- Springer
- paperback
- 352 Seiten
- Erschienen 2011
- Cengage Learning, Inc
- Klappenbroschur
- 351 Seiten
- Erschienen 2020
- De Gruyter Oldenbourg
- Hardcover
- 220 Seiten
- Erschienen 2004
- Elsevier Science
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer
- Hardcover -
- Erschienen 2015
- Springer Spektrum
- paperback
- 275 Seiten
- Erschienen 2023
- Planing Publishing
- Gebunden
- 211 Seiten
- Erschienen 2015
- Springer
- Hardcover
- 480 Seiten
- Erschienen 2014
- John Wiley & Sons Inc
- Hardcover
- 400 Seiten
- Erschienen 2015
- Wiley
- Kartoniert
- 180 Seiten
- Erschienen 2020
- UTB GmbH
- Kartoniert
- 356 Seiten
- Erschienen 2021
- dpunkt.verlag GmbH
- Gebunden
- 448 Seiten
- Erschienen 2005
- Springer
- paperback
- 254 Seiten
- Erschienen 2015
- Packt Pub Ltd