
Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book presents various computationally efficient component- andsystem-level design optimization methods for advanced electrical machines anddrive systems. Readers will discover novel design optimization conceptsdeveloped by the authors and other researchers in the last decade, includingapplication-oriented, multi-disciplinary, multi-objective, multi-level, deterministic,and robust design optimization methods. A multi-disciplinary analysis includesvarious aspects of materials, electromagnetics, thermotics, mechanics, powerelectronics, applied mathematics, manufacturing technology, and quality controland management. This book will benefit both researchers and engineers in thefield of motor and drive design and manufacturing, thus enabling the effectivedevelopment of the high-quality production of innovative, high-performancedrive systems for challenging applications, such as green energy systems andelectric vehicles. von Lei, Gang und Zhu, Jianguo und Guo, Youguang
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Gang Lei received the B.S. degree in Mathematics from Huanggang Normal University, China, in 2003, the M.S. degree in Mathematics and Ph.D. degree in Electrical Engineering from Huazhong University of Science and Technology, China, in 2006 and 2009, respectively. He is currently a Chancellor's Postdoctoral Research Fellow at School of Electrical, Mechanical and Mechatronic Systems, University of Technology, Sydney (UTS), Sydney, Australia. He is a core member of the Green Energy & Vehicle Innovation Centre (GEVIC) which is one of the Research Strengths at UTS. His current research interests include numerical analysis of electromagnetic field, design and optimization of advanced electrical drive systems for renewable energy systems and applications. Jianguo Zhu received the B.E. from the Jiangsu Institute of Technology, Zhenjiang, China, in 1982, the M.E. from Shanghai University of Technology, Shanghai, China, in 1987, and the Ph.D. from University of Technology Sydney (UTS), Sydney, Australia, in 1995. He is currently a Professor of Electrical Engineering and the Head of the School of Electrical, Mechanical and Mechatronic Systems, UTS. He is the co-director of the Green Energy & Vehicle Innovation Centre (GEVIC) which is one of the Research Strengths at UTS. His research interests include electromagnetics, magnetic properties of materials, electrical machines and drives, power electronics, renewable energy systems, and smart micro-grids. Youguang Guo received the B.E. from Huazhong University of Science and Technology (HUST), Wuhan, China, in 1985, the M.E. from Zhejiang University, Zhejiang, China, in 1988, and the Ph.D. from University of Technology Sydney (UTS), Sydney, Australia in 2004, all in Electrical Engineering. From 1988 to 1998, he lectured in the Department of Electric Power Engineering, HUST. From March 1998 to July 2008, he was a Visiting Research Fellow, Ph.D. candidate, Postdoctoral Fellow, and Research Fellow in the Center for Electrical Machines and Power Electronics, Faculty of Engineering, UTS. He is currently an Associate Professor at the School of Electrical, Mechanical and Mechatronic Systems, UTS. He is a core member of the Green Energy & Vehicle Innovation Centre (GEVIC) which is one of the Research Strengths at UTS. His research fields include measurement and modeling of magnetic properties of magnetic materials, numerical analysis of electromagnetic field, electrical machine design and optimization, power electronic drives and control.
- Kartoniert
- 189 Seiten
- Erschienen 2020
- De Gruyter
- Gebunden
- 757 Seiten
- Erschienen 2010
- Wiley-VCH
- Gebunden
- 280 Seiten
- Erschienen 1993
- Springer
- paperback
- 1212 Seiten
- Erschienen 2001
- Springer
- Gebunden
- 664 Seiten
- Erschienen 2007
- Wiley-VCH
- Gebunden
- 617 Seiten
- Erschienen 2006
- Springer
- paperback
- 92 Seiten
- Erschienen 1975
- Springer
- Kartoniert
- 248 Seiten
- Erschienen 2001
- Vieweg Verlag
- hardcover
- 304 Seiten
- Erschienen 2011
- SciTech Publishing Inc
- paperback
- 289 Seiten
- Erschienen 2008
- Shaker
- Kartoniert
- 185 Seiten
- Erschienen 2012
- Vieweg+Teubner Verlag
- Hardcover
- 370 Seiten
- Erschienen 2014
- John Wiley & Sons
- Hardcover
- 432 Seiten
- Erschienen 2023
- Wiley & Sons