Elliptic Curves
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 376 Seiten
- Erschienen 1997
- World Scientific
- Hardcover
- 155 Seiten
- Erschienen 2017
- Edizioni della Normale
- hardcover
- 562 Seiten
- Erschienen 1995
- CRC Press Inc
- Hardcover
- 204 Seiten
- Erschienen 1999
- Oxford University Press
- Gebunden
- 245 Seiten
- Erschienen 2001
- Springer
- Hardcover
- 344 Seiten
- Erschienen 2022
- Springer International Publ...
- Hardcover
- 176 Seiten
- Erschienen 1984
- Springer
- Hardcover
- 420 Seiten
- Erschienen 1999
- Springer
- Hardcover
- 192 Seiten
- Erschienen 2023
- Edward Hicks
- Hardcover
- 348 Seiten
- Erschienen 2013
- Springer
- Taschenbuch
- 232 Seiten
- Erschienen 2003
- ICP