
Dynamics of Parallel Robots
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book establishes recursive relations concerning kinematics and dynamics of constrained robotic systems. It uses matrix modeling to determine the connectivity conditions on the relative velocities and accelerations in order to compare two efficient energetic ways in dynamics modeling: the principle of virtual work, and the formalism of Lagrange's equations. First, a brief fundamental theory is presented on matrix mechanics of the rigid body, which is then developed in the following five chapters treating matrix kinematics of the rigid body, matrix kinematics of the composed motion, kinetics of the rigid body, dynamics of the rigid body, and analytical mechanics. By using a set of successive mobile frames, the geometrical properties and the kinematics of the vector system of velocities and accelerations for each element of the robot are analysed. The dynamics problem is solved in two energetic ways: using an approach based on the principle of virtual work and applying the formalism of Lagrange's equations of the second kind. These are shown to be useful for real-time control of the robot's evolution. Then the recursive matrix method is applied to the kinematics and dynamics analysis of five distinct case studies: planar parallel manipulators, spatial parallel robots, planetary gear trains, mobile wheeled robots and, finally, two-module hybrid parallel robots. von Staicu, Stefan
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- hardcover
- 414 Seiten
- Erschienen 1987
- McGraw-Hill Inc.,US
- perfect
- 128 Seiten
- Erschienen 2012
- Springer
- Kartoniert
- 780 Seiten
- Erschienen 2017
- Springer
- Hardcover -
- Erschienen 2004
- Wiley-VCH
- Hardcover
- 176 Seiten
- Erschienen 2022
- -
- hardcover
- 1056 Seiten
- Erschienen 1998
- Morgan Kaufmann
- hardcover
- 852 Seiten
- Erschienen 1991
- Morgan Kaufmann Publishers In
- Kartoniert
- 1174 Seiten
- Erschienen 2006
- Springer