
Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy. von Covey, Jacob P.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Jacob Covey received his PhD in 2017 for research undertaken at JILA, the University of Colorado, Boulder, and NIST. He holds a postdoctoral research position at Caltech.
- Gebunden
- 416 Seiten
- Erschienen 1991
- Springer
- hardcover
- 232 Seiten
- Erschienen 2012
- Elsevier
- Gebunden
- 250 Seiten
- Erschienen 2011
- Wiley-VCH
- hardcover
- 219 Seiten
- Erschienen 2009
- Wiley-VCH
- hardcover
- 480 Seiten
- Erschienen 1994
- Marcel Dekker Inc
- Hardcover
- 576 Seiten
- Erschienen 1986
- Wiley-Interscience
- Gebunden
- 212 Seiten
- Erschienen 2018
- WSPC (EUROPE)
- Hardcover -
- Erschienen 2010
- Oxford University Press
- hardcover
- 209 Seiten
- Erschienen 1982
- Springer
- hardcover
- 1030 Seiten
- Erschienen 2006
- Springer
- Gebunden
- 190 Seiten
- Erschienen 2012
- Wiley-VCH
- Gebunden
- 2353 Seiten
- Erschienen 2019
- Wiley-VCH
- Gebunden
- 344 Seiten
- Erschienen 2009
- Wiley-VCH
- hardcover
- 728 Seiten
- Erschienen 2005
- Academic Press