
The Convergence Problem for Dissipative Autonomous Systems
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers. von Haraux, Alain und Jendoubi, Mohamed Ali
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- paperback
- 248 Seiten
- Erschienen 2013
- Springer
- Hardcover
- 176 Seiten
- Erschienen 1990
- Friedrich Vieweg & Sohn...
- Hardcover
- 204 Seiten
- Erschienen 1999
- Oxford University Press
- Hardcover
- 428 Seiten
- Erschienen 1984
- Friedrick Vieweg & Son
- Gebunden
- 257 Seiten
- Erschienen 2008
- Wiley-VCH
- hardcover
- 188 Seiten
- Erschienen 2002
- World Scientific Publishing...
- Hardcover
- 240 Seiten
- Erschienen 2021
- Wiley-IEEE Press
- Hardcover
- 620 Seiten
- Erschienen 1992
- Vieweg+Teubner Verlag
- Gebunden
- 430 Seiten
- Erschienen 2018
- De Gruyter
- Hardcover
- 756 Seiten
- Erschienen 2011
- Cambridge University Press
- paperback
- 462 Seiten
- Erschienen 1991
- MIT Press
- hardcover
- 440 Seiten
- Erschienen 2007
- Taylor & Francis Inc