
An Invitation to Web Geometry
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern's bound and Trépreau's algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented. von Pereira, Jorge Vitorio und Pirio, Luc
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Jorge Vitorio Pereira is a Research Associate at IMPA (Instituto Nacional de Matematica Pura e Aplicada). Luc Pirio leads research efforts at CNRS.
- Hardcover -
- Erschienen 1996
- Springer
- hardcover
- 668 Seiten
- Erschienen 1987
- W.H.Freeman & Co Ltd
- Gebunden
- 631 Seiten
- Erschienen 2009
- Springer
- Gebunden
- 437 Seiten
- Erschienen 2012
- Springer
- hardcover
- 406 Seiten
- Erschienen 1982
- De Gruyter
- hardcover
- 368 Seiten
- Erschienen 1986
- Springer
- Gebunden
- 340 Seiten
- Erschienen 2012
- Springer
- Hardcover
- 312 Seiten
- Editions universitaires eur...
- hardcover
- 780 Seiten
- Erschienen 1985
- John Wiley & Sons Inc
- hardcover
- 253 Seiten
- Erschienen 1994
- Vieweg+Teubner Verlag
- Taschenbuch
- 288 Seiten
- Erschienen 2002
- Crc