
Automatic Design of Decision-Tree Induction Algorithms
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain of interest. For such, they discuss how one can effectively discover the most suitable set of components of decision-tree induction algorithms to deal with a wide variety of applications through the paradigm of evolutionary computation, following the emergence of a novel field called hyper-heuristics."Automatic Design of Decision-Tree Induction Algorithms" would be highly useful for machine learning and evolutionary computation students and researchers alike. von Barros, Rodrigo C. und Carvalho, André C. P. L. F. de und Freitas, Alex
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer
- Hardcover
- 312 Seiten
- Erschienen 2001
- Springer
- Gebunden
- 387 Seiten
- Erschienen 1998
- Springer
- paperback
- 416 Seiten
- Erschienen 1989
- MIT Press
- Hardcover -
- Erschienen 2017
- Springer
- Hardcover
- 220 Seiten
- Erschienen 2004
- Elsevier Science
- Hardcover
- 208 Seiten
- Erschienen 2010
- Springer
- Hardcover
- 432 Seiten
- Erschienen 2023
- Wiley & Sons
- Hardcover
- 722 Seiten
- John Wiley & Sons
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley-Scrivener