
Lobachevsky Geometry and Modern Nonlinear Problems
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound "geometrical roots" and numerous applications to modern nonlinear problems, it is treated as a universal "object" of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry. von Popov, Andrey und Iacob, Andrei
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- perfect
- 196 Seiten
- Erschienen 2013
- Springer
- hardcover
- 384 Seiten
- Erschienen 2020
- Wiley
- Kartoniert
- 204 Seiten
- Erschienen 2007
- Springer
- hardcover
- 441 Seiten
- Erschienen 1995
- Birkhäuser
- hardcover
- 301 Seiten
- Erschienen 1996
- Birkhäuser Verlag
- Hardcover
- 344 Seiten
- Erschienen 1970
- De Gruyter
- Hardcover
- 542 Seiten
- Erschienen 2012
- Wiley
- Gebunden
- 488 Seiten
- Erschienen 2016
- Springer Spektrum