
Narrow Operators on Function Spaces and Vector Lattices
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Most classes of operators that are not isomorphic embeddings are characterized by some kind of a ?smallness? condition. Narrow operators are those operators defined on function spaces that are ?small? at {-1,0,1}-valued functions, e.g. compact operators are narrow. The original motivation to consider such operators came from theory of embeddings of Banach spaces, but since then they were also applied to the study of the Daugavet property and to other geometrical problems of functional analysis. The question of when a sum of two narrow operators is narrow, has led to deep developments of the theory of narrow operators, including an extension of the notion to vector lattices and investigations of connections to regular operators. Narrow operators were a subject of numerous investigations during the last 30 years. This monograph provides a comprehensive presentation putting them in context of modern theory. It gives an in depth systematic exposition of concepts related to and influenced by narrow operators, starting from basic results and building up to most recent developments. The authors include a complete bibliography and many attractive open problems. von Popov, Mikhail und Randrianantoanina, Beata
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Mikhail Popov, Chernivtsi National University, Ukraine; Miami University, Oxford, USA; Beata Randrianantoanina, Miami University, Oxford, USA.
- hardcover
- 261 Seiten
- Erschienen 2020
- Birkhäuser
- Hardcover
- 180 Seiten
- Erschienen 1991
- Spektrum Akademischer Verlag
- hardcover
- 520 Seiten
- Erschienen 1987
- Springer
- hardcover
- 296 Seiten
- Erschienen 1990
- Academic Press
- Gebunden
- 416 Seiten
- Erschienen 1981
- Academic Press
- Hardcover
- 176 Seiten
- Erschienen 2012
- Springer
- paperback
- 141 Seiten
- Erschienen 2003
- Oxford University Press
- paperback
- 388 Seiten
- Erschienen 2009
- Springer