Dynamical Systems of Algebraic Origin
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Although the study of dynamical systems is mainly concerned with single trans formations and one-parameter flows (i. e. with actions of Z, N, JR, or JR+), er godic theory inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multi-dimensional sym metry groups. However, the wealth of concrete and natural examples, which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. A remarkable exception is provided by a class of geometric actions of (discrete subgroups of) semi-simple Lie groups, which have led to the discovery of one of the most striking new phenomena in multi-dimensional ergodic theory: under suitable circumstances orbit equivalence of such actions implies not only measurable conjugacy, but the conjugating map itself has to be extremely well behaved. Some of these rigidity properties are inherited by certain abelian subgroups of these groups, but the very special nature of the actions involved does not allow any general conjectures about actions of multi-dimensional abelian groups. Beyond commuting group rotations, commuting toral automorphisms and certain other algebraic examples (cf. [39]) it is quite difficult to find non-trivial smooth Zd-actions on finite-dimensional manifolds. In addition to scarcity, these examples give rise to actions with zero entropy, since smooth Zd-actions with positive entropy cannot exist on finite-dimensional, connected manifolds. Cellular automata (i. e. von Schmidt, Klaus
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Kartoniert
- 432 Seiten
- Erschienen 2019
- Birkhäuser
- Gebunden
- 334 Seiten
- Erschienen 2011
- Springer
- Kartoniert
- 249 Seiten
- Erschienen 2015
- Springer Spektrum
- Kartoniert
- 468 Seiten
- Erschienen 2013
- Springer Spektrum
- hardcover
- 348 Seiten
- Erschienen 2020
- Springer
- hardcover
- 700 Seiten
- Erschienen 1996
- Springer
- Gebunden
- 243 Seiten
- Erschienen 2018
- Springer
- Hardcover -
- Erschienen 2008
- Spektrum Akademischer Verlag
- Kartoniert
- 204 Seiten
- Erschienen 2007
- Springer




