
Exponentially Convergent Algorithms for Abstract Differential Equations
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as of partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which then can be applied to mathematical models of the real world. The problem class includes initial value problems (IVP) for first order differential equations with constant and variable unbounded operator coefficients in a Banach space (the heat equation is a simple example), boundary value problems for the second order elliptic differential equation with an operator coefficient (e.g. the Laplace equation), IVPs for the second order strongly damped differential equation as well as exponentially convergent methods to IVPs for the first order nonlinear differential equation with unbounded operator coefficients. For researchers and students of numerical functional analysis, engineering and other sciences this book provides highly efficient algorithms for the numerical solution of differential equations and applied problems. von Gavrilyuk, Ivan und Makarov, Volodymyr und Vasylyk, Vitalii
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 632 Seiten
- Erschienen 1996
- Springer
- Hardcover
- 176 Seiten
- Erschienen 1990
- Friedrich Vieweg & Sohn...
- Hardcover
- 548 Seiten
- Erschienen 1993
- Springer
- Hardcover
- 204 Seiten
- Erschienen 1999
- Oxford University Press
- hardcover
- 560 Seiten
- Erschienen 2012
- Wiley
- paperback
- 244 Seiten
- Erschienen 1978
- Springer Berlin Heidelberg
- paperback
- 385 Seiten
- Erschienen 2009
- Mcgraw-Hill Professional