

Complex Analysis
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Several Complex Variables is a beautiful example of a ?eld requiring a wide rangeoftechniquescoming fromdiverseareasin Mathematics.Inthe lastdecades, many major breakthroughs depended in particular on methods coming from P- tial Di?erential Equations and Di?erential and Algebraic Geometry. In turn, S- eralComplexVariablesprovidedresultsandinsightswhichhavebeenoffundam- tal importance to these ?elds. This is in particular exempli?ed by the subject of Cauchy-Riemanngeometry,whichconcernsitselfbothwiththetangentialCauchy- Riemannequationsandtheuniquemixtureofrealandcomplexgeometrythatreal objects in a complex space enjoy. CR geometry blends techniques from algebraic geometry, contact geometry, complex analysis and PDEs; as a unique meeting point for some of these subjects, it shows evidence of the possible synergies of a fusion of the techniques from these ?elds. The interplay between PDE and Complex Analysis has its roots in Hans Lewy¿s famous example of a locally non solvable PDE. More recent work on PDE has been similarly inspired by examples from CR geometry. The application of analytic techniques in algebraic geometry has a long history; especially in recent ¯ years, the analysis of the ?-operator has been a crucial tool in this ?eld. The ¯ ?-operator remains one of the most important examples of a partial di?erential operator for which regularity of solutions under boundary constraints have been extensively studied. In that respect, CR geometry as well as algebraic geometry have helped to understand the subtle aspects of the problem, which is still at the heart of current research. von Ebenfelt, Peter und Hungerbühler, Norbert und Straube, Emil J. und Mok, Ngaiming und Kohn, Joseph J.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- hardcover
- 498 Seiten
- Erschienen 2001
- Springer
- hardcover
- 280 Seiten
- Erschienen 2015
- Wiley
- Kartoniert
- 310 Seiten
- Erschienen 2007
- De Gruyter Oldenbourg
- hardcover
- 797 Seiten
- Erschienen 1981
- Academic Press Inc
- Kartoniert
- 460 Seiten
- Erschienen 2004
- Springer
- Hardcover
- 360 Seiten
- Erschienen 2006
- Cornelsen Verlag
- Kartoniert
- 272 Seiten
- Erschienen 2004
- Springer
- hardcover
- 292 Seiten
- Erschienen 2006
- American Mathematical Society
- hardcover
- 496 Seiten
- Erschienen 2002
- Springer
- hardcover
- 1142 Seiten
- Erschienen 2009
- Houghton Mifflin