A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory. von Zenaïdi, Naïm;Marichal, Jean-Luc;
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 500 Seiten
- Erschienen 1998
- Springer
- hardcover
- 229 Seiten
- Erschienen 1972
- Springer
- Hardcover
- 396 Seiten
- Springer
- Hardcover
- 418 Seiten
- Erschienen 2008
- Birkhäuser Boston
- Gebunden
- 226 Seiten
- Erschienen 2006
- Wiley-VCH
- Hardcover
- 420 Seiten
- Erschienen 1999
- Springer
- Hardcover
- 376 Seiten
- Erschienen 1997
- World Scientific
- Hardcover
- 164 Seiten
- Erschienen 2016
- Birkhäuser
- Hardcover
- 348 Seiten
- Erschienen 2013
- Springer
- Hardcover
- 228 Seiten
- Erschienen 1989
- Springer
- Hardcover
- 176 Seiten
- Erschienen 1984
- Springer
- Hardcover
- 155 Seiten
- Erschienen 2017
- Edizioni della Normale
- Taschenbuch
- 280 Seiten
- Erschienen 2004
- Cambridge University Press