Differential- und Integralrechnung III
Kurzinformation
inkl. MwSt. Versandinformationen
Lieferzeit 1-3 Werktage
Lieferzeit 1-3 Werktage
Beschreibung
wir begtigen uns mit dem Nachweis, daB die meBbaren Mengen eine a-Algebra bilden, auf welcher der Inhalt als a-additives Funktional operiert, und daB jede offene Menge meBbar ist. 2. Das zweite Kapitel bringt den Begriff der alternierenden Differentialform. Die multilineare Algebra wird in dem Umfang, in dem wir sie brauchen, mitbehandelt. Differentialformen sind die natlirlichen Integranden der in Kap. III untersuchten Flacheninte grale. Hier werden auch die wichtige Transformationsformel fUr die Integration in n Veranderlichen und der Stokessche Satz bewiesen. Die Integration erfolgt tiber (kompakte) "gepflasterte" Flachen; das Integral erweist sich dabei als unabhangig von der Auswahl der Pflasterung. Da sich jede glatte Flache ~ in natlirli cher Weise pflastern laBt, ist eine Integration tiber ~ stets mo glich. Ahnlich dtirfte jede kompakte semianalytische Menge (mit Singularitaten!) Pflasterungen besitzen. Die letzten beiden Paragraphen des dritten Kapitels sind dann den Kurvenintegralen tiber beliebige rektifizierbare Wege gewid met. Urn das Integral in dieser Allgemeinheit zu erhalten, ist eine Untersuchung der absolut stetigen Funktionen notwendig. Damit werden auch die bereits in Band I angegebenen Satze tiber die Variablentransformation im Lebesgue-Integral und tiber den Zu sammenhang zwischen Differentiation und Integration bewiesen. von Lieb, I.;Grauert, H.;
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 388 Seiten
- Erschienen 2013
- Springer Spektrum
- Hardcover
- 245 Seiten
- Erschienen 2017
- Springer Spektrum
- Hardcover
- 216 Seiten
- Erschienen 2013
- Oldenbourg Wissenschaftsverlag
- Hardcover
- 560 Seiten
- Erschienen 2021
- Cornelsen Lernhilfen
- Hardcover
- 784 Seiten
- Erschienen 1995
- Cornelsen Lernhilfen
- Hardcover
- 272 Seiten
- Erschienen 1994
- De Gruyter Oldenbourg
- Hardcover
- 140 Seiten
- Erschienen 2009
- Springer
- paperback
- 464 Seiten
- Erschienen 1978
- Springer Berlin Heidelberg