
Singular Loci of Schubert Varieties
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
"Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties - namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables - the latter not to be found elsewhere in the mathematics literature - round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students. von Lakshmibai, V. und Sarason, Sara
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- hardcover
- 253 Seiten
- Erschienen 1994
- Vieweg+Teubner Verlag
- paperback
- 323 Seiten
- Erschienen 1997
- Schneider, Hans
- Kartoniert
- 204 Seiten
- Erschienen 2007
- Springer
- paperback
- 548 Seiten
- Erschienen 1999
- Springer
- perfect
- 196 Seiten
- Erschienen 2013
- Springer
- paperback
- 232 Seiten
- Erschienen 1991
- Springer
- paperback
- 548 Seiten
- Erschienen 2008
- Springer
- paperback
- 202 Seiten
- Erschienen 1996
- Mathematical Association of...
- hardcover -
- Erschienen 1986
- Pfaffenhofen : Ludwig
- hardcover
- 441 Seiten
- Erschienen 1995
- Birkhäuser