
Information Theory and Statistical Learning
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
"Information Theory and Statistical Learning" presents theoretical and practical results about information theoretic methods used in the context of statistical learning. The book will present a comprehensive overview of the large range of different methods that have been developed in a multitude of contexts. Each chapter is written by an expert in the field. The book is intended for an interdisciplinary readership working in machine learning, applied statistics, artificial intelligence, biostatistics, computational biology, bioinformatics, web mining or related disciplines. Advance Praise for "Information Theory and Statistical Learning": "A new epoch has arrived for information sciences to integrate various disciplines such as information theory, machine learning, statistical inference, data mining, model selection etc. I am enthusiastic about recommending the present book to researchers and students, because it summarizes most of these new emerging subjects and methods, which are otherwise scattered in many places." Shun-ichi Amari, RIKEN Brain Science Institute, Professor-Emeritus at the University of Tokyo von Emmert-Streib, Frank
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- paperback
- 628 Seiten
- Erschienen 1996
- Wiley
- Gebunden
- 368 Seiten
- Erschienen 2012
- Springer
- Hardcover
- 256 Seiten
- Erschienen 2022
- Wiley & Sons
- Kartoniert
- 448 Seiten
- Erschienen 2021
- Basic Books
- paperback
- 400 Seiten
- Erschienen 2010
- Springer
- Gebunden
- 738 Seiten
- Erschienen 2011
- Springer