Vector Spherical Harmonic and Vector Wavelet Based Non-Linear Galerkin Schemes for Solving the Incom

Vector Spherical Harmonic and Vector Wavelet Based Non-Linear Galerkin Schemes for Solving the Incom

Gebrauchte Bücher kaufen

Information
Das Buch befindet sich in einem sehr guten, unbenutzten Zustand.
Information
Das Buch befindet sich in einem sehr guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können leichte Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können Knicke/Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem lesbaren Zustand. Die Seiten und der Einband sind intakt, jedoch weisen Buchrücken/Ecken/Kanten starke Knicke/Gebrauchsspuren auf.

Neues Buch oder eBook (pdf) kaufen

Information
Neuware - verlagsfrische aktuelle Buchausgabe.
Dieser Artikel steht derzeit nicht zur Verfügung!
Zustand : Neu
49,80 €

inkl. MwSt. zzgl. Versandkosten

Artikel zZt. nicht lieferbar

9783832245580

Die Studibuch Philosophie

Wissen zu fairen Preisen, nachhaltig weitergeben.
Produktdetails mehr
Einband: Kartoniert
Seitenzahl: 252
Erschienen: 2005-11-01
Sprache: Englisch
EAN: 9783832245580
ISBN: 3832245588
Reihe: Berichte aus der Mathematik
Verlag: Shaker Verlag
Gewicht: 354 g
Auflage:
The spherical Navier-Stokes equation plays a fundamental role in meteorology by modelling... mehr
Produktinformationen "Vector Spherical Harmonic and Vector Wavelet Based Non-Linear Galerkin Schemes for Solving the Incom"
The spherical Navier-Stokes equation plays a fundamental role in meteorology by modelling meso-scale (stratified) atmospherical flows. In this context, this thesis is concerned with different nonlinear Galerkin methods for solving the incompressible Navier-Stokes equation on the rotating sphere. It extends the work of Debussche et al. (1995), Marion and Temam (1989), as well as Shen (1993) from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on surface divergence free vector spherical harmonics is introduced and convergence is proven. Furthermore, it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFTbased pseudo spectral algorithm involving vector as well was tensor spherical harmonics for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales like O(N 3 ), where N denotes the maximal spherical harmonic degree. The second part of this work introduces bandlimited as well as nonbandlimited, locally supported vector wavelets and their application to the aforementioned nonlinear Galerkin scheme. In detail, this scheme is implemented by using surface divergence free vectorial spherical wavelets, and its convergence is proven. Again we find algebraic expressions for the representation of integrals involving three vector wavelets. To improve numerical efficiency an extension of the spherical panel clustering algorithm to vectorial and tensorial kernels is constructed. This method enables the rapid computation of the wavelet coefficients of the nonlinear advection term. Thereby, we also indicate error estimates. Finally, extensive numerical simulations show the applicability of our methods. Next to some benchmark results, such as the nonlinear interaction of three vortices, we also study the forecast of a real atmospherical flow.
Weiterführende Links zu "Vector Spherical Harmonic and Vector Wavelet Based Non-Linear Galerkin Schemes for Solving the Incom"
Bewertungen lesen, schreiben und diskutieren... mehr
Kundenbewertungen für "Vector Spherical Harmonic and Vector Wavelet Based Non-Linear Galerkin Schemes for Solving the Incom"
Bewertung schreiben
Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.

Fengler, Martin J mehr
Zuletzt angesehen
Entdecke mehr Gebrauchtes für Dich