
Linear Programming Duality
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The main theorem of Linear Programming Duality, relating a "pri mal" Linear Programming problem to its "dual" and vice versa, can be seen as a statement about sign patterns of vectors in complemen tary subspaces of Rn. This observation, first made by R.T. Rockafellar in the late six ties, led to the introduction of certain systems of sign vectors, called "oriented matroids". Indeed, when oriented matroids came into being in the early seventies, one of the main issues was to study the fun damental principles underlying Linear Progra.mrning Duality in this abstract setting. In the present book we tried to follow this approach, i.e., rather than starting out from ordinary (unoriented) matroid theory, we pre ferred to develop oriented matroids directly as appropriate abstrac tions of linear subspaces. Thus, the way we introduce oriented ma troids makes clear that these structures are the most general -and hence, the most simple -ones in which Linear Programming Duality results can be stated and proved. We hope that this helps to get a better understanding of LP-Duality for those who have learned about it before und a good introduction for those who have not. von Kern, Walter und Bachem, Achim
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 648 Seiten
- Erschienen 2018
- Springer
- hardcover
- 336 Seiten
- Erschienen 2020
- Wiley
- hardcover
- 193 Seiten
- Erschienen 1994
- Society for Industrial & Ap...
- hardcover
- 384 Seiten
- Erschienen 2020
- Wiley
- hardcover
- 350 Seiten
- Erschienen 1985
- Springer
- Hardcover
- 344 Seiten
- Erschienen 1970
- De Gruyter
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer
- Hardcover
- 312 Seiten
- Erschienen 2001
- Springer
- paperback
- 508 Seiten
- Erschienen 2002
- Cambridge
- paperback
- 388 Seiten
- Erschienen 2009
- Springer
- Gebunden
- 309 Seiten
- Erschienen 2007
- Wiley-VCH
- Hardcover
- 256 Seiten
- Erschienen 2022
- Wiley & Sons
- Hardcover
- 466 Seiten
- Erschienen 2010
- Cambridge University Press