
Mathematical Foundations of Computational Electromagnetism
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well-posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell's equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell's equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis. von Assous, Franck
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- paperback
- 630 Seiten
- Erschienen 2008
- Pearson
- hardcover
- 496 Seiten
- Erschienen 2001
- Wiley-IEEE Press
- paperback
- 644 Seiten
- Erschienen 2007
- Adams Press
- Gebunden
- 757 Seiten
- Erschienen 2010
- Wiley-VCH
- hardcover
- 560 Seiten
- Erschienen 2023
- Wiley
- hardcover
- 1008 Seiten
- Erschienen 1989
- John Wiley & Sons
- Kartoniert
- 824 Seiten
- Erschienen 2016
- Springer
- Hardcover -
- Erschienen 2003
- Vieweg+Teubner Verlag
- paperback
- 284 Seiten
- Erschienen 1999
- Teubner Verlag
- paperback
- 164 Seiten
- Erschienen 1989
- Teubner Verlag