
Matrix Algebra
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. von Gentle, James E.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
¿James E. Gentle, PhD, is University Professor of Computational Statistics at George Mason University. He is a Fellow of the American Statistical Association (ASA) and of the American Association for the Advancement of Science. Professor Gentle has held several national offices in the ASA and has served as editor and associate editor of journals of the ASA as well as for other journals in statistics and computing. He is author of Random Number Generation and Monte Carlo Methods (Springer, 2003) and Computational Statistics (Springer, 2009).
- Hardcover
- 466 Seiten
- Erschienen 2010
- Cambridge University Press
- Hardcover
- 344 Seiten
- Erschienen 1970
- De Gruyter
- hardcover
- 193 Seiten
- Erschienen 1994
- Society for Industrial & Ap...
- Gebunden
- 511 Seiten
- Erschienen 2015
- Springer
- hardcover
- 536 Seiten
- Erschienen 1992
- Springer
- Hardcover
- 308 Seiten
- Erschienen 1994
- Springer
- paperback
- 415 Seiten
- Erschienen 1998
- De Gruyter
- hardcover
- 341 Seiten
- Erschienen 1900
- De Gruyter