Controlling Synchronization Patterns in Complex Networks
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks. von Lehnert, Judith
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Judith Lehnert studied physics at Humboldt Universität zu Berlin, Technische Universität Berlin, Germany, and the University of Leeds, UK. Her studies were supported by a scholarship for academic excellence of the German National Academic Foundation. She received her Diploma in 2010 for which she was awarded the Physics Study Award of the Wilhelm and Else Heraeus Foundation and the Clara von Simson Award. In 2010 and 2012, she visited St. Petersburg State University, Russia, supported by the German-Russian Interdisciplinary Science Center. Judith Lehnert received the Dr. rer. nat. degree from Technische Universität Berlin in 2015. Her research interests include nonlinear dynamics, complex networks, adaptive control, zero-lag and cluster synchronization, delay differential equations and neural dynamics.
- hardcover
- 348 Seiten
- Erschienen 2020
- Springer
- Gebunden
- 334 Seiten
- Erschienen 2011
- Springer
- Kartoniert
- 347 Seiten
- Erschienen 2005
- Springer
- Gebunden
- 336 Seiten
- Erschienen 2008
- Springer
- hardcover
- 534 Seiten
- Erschienen 2021
- MDPI AG
- hardcover
- 440 Seiten
- Erschienen 2007
- Taylor & Francis Inc
- paperback
- 420 Seiten
- Erschienen 2013
- Springer
- Gebunden
- 218 Seiten
- Erschienen 2019
- Springer
- paperback
- 270 Seiten
- Erschienen 2009
- Kovac, Dr. Verlag
- paperback
- 600 Seiten
- Erschienen 1997
- Perseus
- Gebunden
- 456 Seiten
- Erschienen 2016
- Cambridge University Press
- Gebunden
- 272 Seiten
- Erschienen 2007
- Springer
- hardcover
- 320 Seiten
- Erschienen 2013
- Wiley
- Gebunden
- 255 Seiten
- Erschienen 2017
- Springer
- paperback
- 296 Seiten
- Erschienen 2008
- Springer
- hardcover
- 278 Seiten
- Erschienen 2017
- World Scientific
- hardcover
- 576 Seiten
- Erschienen 2004
- Morgan Kaufmann
- hardcover
- 296 Seiten
- Erschienen 2016
- Wiley-VCH
- Kartoniert
- 440 Seiten
- Erschienen 2014
- Springer Gabler




