
Information Science for Materials Discovery and Design
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a ¿fourth leg¿¿ to our toolkit to make the ¿Materials Genome'' a reality, the science of Materials Informatics. von Lookman, Turab und Alexander, Francis und Rajan, Krishna
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Gebunden
- 696 Seiten
- Erschienen 2018
- Wiley-VCH
- Hardcover
- 592 Seiten
- Erschienen 1997
- Wiley-VCH
- Gebunden
- 294 Seiten
- Erschienen 2005
- Wiley-VCH
- paperback
- 912 Seiten
- Erschienen 2008
- John Wiley & Sons
- hardcover
- 575 Seiten
- Erschienen 2014
- Cambridge University Press
- hardcover
- 863 Seiten
- Erschienen 2005
- Brooks/Cole
- paperback
- 680 Seiten
- Erschienen 2003
- CRC Press
- Hardcover -
- Erschienen 2012
- Wiley-VCH
- hardcover
- 683 Seiten
- Erschienen 2020
- Springer
- hardcover
- 450 Seiten
- Erschienen 2010
- Wiley-VCH
- Gebunden
- 195 Seiten
- Erschienen 2013
- Wiley-VCH