
Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The asymptotic distribution of eigenvalues of self-adjoint differential operators in the high-energy limit, or the semi-classical limit, is a classical subject going back to H. Weyl of more than a century ago. In the last decades there has been a renewed interest in non-self-adjoint differential operators which have many subtle properties such as instability under small perturbations. Quite remarkably, when adding small random perturbations to such operators, the eigenvalues tend to distribute according to Weyl's law (quite differently from the distribution for the unperturbed operators in analytic cases). A first result in this direction was obtained by M. Hager in her thesis of 2005. Since then, further general results have been obtained, which are the main subject of the present book. Additional themes from the theory of non-self-adjoint operators are also treated. The methods are very much based on microlocal analysis and especially on pseudodifferential operators. The reader will find a broad field with plenty of open problems. von Sjöstrand, Johannes
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- hardcover
- 261 Seiten
- Erschienen 2020
- Birkhäuser
- hardcover
- 366 Seiten
- Erschienen 2022
- Birkhäuser
- Hardcover
- 548 Seiten
- Erschienen 1993
- Springer
- paperback
- 272 Seiten
- Erschienen 2018
- Dover Publications Inc.
- hardcover
- 251 Seiten
- Erschienen 1976
- De Gruyter
- Kartoniert
- 204 Seiten
- Erschienen 2007
- Springer
- hardcover
- 296 Seiten
- Erschienen 1990
- Academic Press
- hardcover
- 878 Seiten
- Erschienen 2007
- Birkhäuser