
Practical Fairness: Achieving Fair and Secure Data Models
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Fairness is becoming a paramount consideration for data scientists. Mounting evidence indicates that the widespread deployment of machine learning and AI in business and government is reproducing the same biases we're trying to fight in the real world. But what does fairness mean when it comes to code? This practical book covers basic concerns related to data security and privacy to help data and AI professionals use code that's fair and free of bias.Many realistic best practices are emerging at all steps along the data pipeline today, from data selection and preprocessing to closed model audits. Author Aileen Nielsen guides you through technical, legal, and ethical aspects of making code fair and secure, while highlighting up-to-date academic research and ongoing legal developments related to fairness and algorithms.Identify potential bias and discrimination in data science modelsUse preventive measures to minimize bias when developing data modeling pipelinesUnderstand what data pipeline components implicate security and privacy concernsWrite data processing and modeling code that implements best practices for fairnessRecognize the complex interrelationships between fairness, privacy, and data security created by the use of machine learning modelsApply normative and legal concepts relevant to evaluating the fairness of machine learning models von Nielsen, Aileen
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Aileen Nielsen is a software engineer who has analyzed data in a variety of settings from a physics laboratory to a political campaign to a healthcare startup. She also has a law degree and splits her time between a deep learning startup and research as a Fellow in Law and Technology at ETH Zurich. She has given talks around the world on fairness issues in data and modeling.
- Taschenbuch
- 218 Seiten
- Erschienen 2012
- Morgan & Claypool Publishers
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer
- Kartoniert
- 551 Seiten
- Erschienen 1996
- Springer
- Kartoniert
- 190 Seiten
- Erschienen 2016
- Technics Publications
- Hardcover
- 220 Seiten
- Erschienen 2004
- Elsevier Science
- Taschenbuch
- 246 Seiten
- Erschienen 2018
- Asterys
- Gebunden
- 447 Seiten
- Erschienen 2015
- Springer
- Hardcover
- 312 Seiten
- Erschienen 2001
- Springer
- Kartoniert
- 552 Seiten
- Erschienen 2012
- Springer
- Gebunden
- 476 Seiten
- Erschienen 2015
- Springer
- Taschenbuch
- 412 Seiten
- Erschienen 1999
- Verso Books
- Kartoniert
- 208 Seiten
- Erschienen 2011
- Springer