
Stability of Functional Equations in Random Normed Spaces
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research. The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research. von Cho, Yeol Je und Saadati, Reza und Rassias, Themistocles M.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 180 Seiten
- Erschienen 1991
- Spektrum Akademischer Verlag
- Gebunden
- 416 Seiten
- Erschienen 1981
- Academic Press
- Hardcover
- 204 Seiten
- Erschienen 1999
- Oxford University Press
- hardcover
- 441 Seiten
- Erschienen 1995
- Birkhäuser
- Hardcover
- 176 Seiten
- Erschienen 1990
- Friedrich Vieweg & Sohn...
- hardcover
- 229 Seiten
- Erschienen 1972
- Springer
- hardcover
- 261 Seiten
- Erschienen 2020
- Birkhäuser
- paperback
- 388 Seiten
- Erschienen 2009
- Springer