
Predicting the Future
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Through the development of an exact path integral for use in transferring information from observations to a model of the observed system, the author provides a general framework for the discussion of model building and evaluation across disciplines. Through many illustrative examples drawn from models in neuroscience, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is explored. von Abarbanel, Henry D. I.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Henry Abarbanel is a new member of the Springer Complexity Board. He is a Professor of Physics at UCSD in La Jolla, CA. http://neurograd.ucsd.edu/faculty/detail.php?id=19
- hardcover
- 238 Seiten
- Erschienen 2017
- Taylor & Francis Ltd
- Gebunden
- 239 Seiten
- Erschienen 2019
- Haufe
- Gebunden
- 628 Seiten
- Erschienen 2021
- Ruhland
- perfect
- 184 Seiten
- Erschienen 2021
- Zukunftsinstitut
- paperback
- 328 Seiten
- Erschienen 2022
- Water Dragon Publishing
- paperback
- 260 Seiten
- Erschienen 2020
- Routledge
- Gebunden
- 567 Seiten
- Erschienen 2019
- Springer
- hardcover -
- Erschienen 1992
- Outlet