
Particle Filters for Random Set Models
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation. von Ristic, Branko
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Branko Ristic is at the Defence Science and Technology Organisation, AustraliaDefence Science and Technology Organisation, Australia
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- Gebunden
- 390 Seiten
- Erschienen 2008
- Springer
- Hardcover -
- Erschienen 2017
- Springer
- hardcover
- 192 Seiten
- Erschienen 2012
- Springer
- Hardcover
- 428 Seiten
- Erschienen 1984
- Friedrick Vieweg & Son
- paperback
- 180 Seiten
- Erschienen 2013
- Springer
- Hardcover
- 208 Seiten
- Erschienen 2010
- Springer
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer
- paperback
- 320 Seiten
- Erschienen 2017
- Springer