LeafKlimaneutrales Unternehmen CoinFaire Preise PackageSchneller und kostenloser Versand ab 14,90 € Bestellwert
Fehlermanagement

Fehlermanagement

inkl. MwSt. Versandinformationen

Artikel zZt. nicht lieferbar

Artikel zZt. nicht lieferbar

Kurzinformation
Sprache:
Deutsch
ISBN:
1158968108
Verlag:
Seitenzahl:
68
Auflage:
-
Erschienen:
2014-12-12
Dieser Artikel steht derzeit nicht zur Verfügung!

Gebrauchte Bücher kaufen

Information
Das Buch befindet sich in einem sehr guten, unbenutzten Zustand.
Information
Das Buch befindet sich in einem sehr guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können leichte Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können Knicke/Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem lesbaren Zustand. Die Seiten und der Einband sind intakt, jedoch weisen Buchrücken/Ecken/Kanten starke Knicke/Gebrauchsspuren auf. Zusatzmaterialien können fehlen.

Neues Buch oder eBook (pdf) kaufen

Information
Neuware - verlagsfrische aktuelle Buchausgabe.
Natural Handgeprüfte Gebrauchtware
Coins Schnelle Lieferung
Check Faire Preise

inkl. MwSt. Versandinformationen

Artikel zZt. nicht lieferbar

Artikel zZt. nicht lieferbar

Weitere Zahlungsmöglichkeiten  
Zahlungsarten

Beschreibung

Fehlermanagement
Bugtracker, Fehler, Falscher Freund, Fehlschluss, Filmfehler, Beurteilung eines Klassifikators, Benutzerschnittstelle, Toleranz, Fehlerkultur, Fehlerarten in Drehstromsystemen, Pentium-FDIV-Bug, Issue-Tracking-System, Menschlicher Fehler

Quelle: Wikipedia. Seiten: 67. Kapitel: Bugtracker, Fehler, Falscher Freund, Fehlschluss, Filmfehler, Beurteilung eines Klassifikators, Benutzerschnittstelle, Toleranz, Fehlerkultur, Fehlerarten in Drehstromsystemen, Pentium-FDIV-Bug, Issue-Tracking-System, Menschlicher Fehler, Open Ticket Request System, Fehlertoleranz, Gitterfehler, Messabweichung, Freud'scher Versprecher, Mean Time Between Failures, Ausnahme, Ausfallrate, Redmine, Soft Error, Rechtschreibfehler, Delta-Analyse, Schaden, Roundup, Modellfehler, Jira, Alphafehler-Kumulierung, Irrtum, Tippfehler, Failure In Time, Bugzilla, Fehlerschranke, Mantis, Byzantinischer Fehler, Fehlerfreundlichkeit, Fehler in elektronischen Schaltungen, Technischer Defekt, Hardwarefehler, Versagen, Fehler-Ursachen-Analyse, Technopathogenologie, Kardinalfehler, Retrospectiva, Zielscheibenfehler, Fehlerdiagnose, Track+, Request Tracker, Metábasis eis állo génos, Mean Time To Failure, Klaffung, OsTicket, Fehlerhäufigkeit, Delta Debugging, Fehlersammelkarte, Lapsus, Konstruktionsfehler, Prozessdatenvalidierung, Entstörzeit, Absichtlicher Fehler, Bitfehler. Auszug: Bei einer Klassifizierung werden Objekte anhand von bestimmten Merkmalen durch einen Klassifikator in verschiedene Klassen eingeordnet. Der Klassifikator macht dabei im Allgemeinen Fehler, ordnet also in manchen Fällen ein Objekt einer falschen Klasse zu. Aus der relativen Häufigkeit dieser Fehler lassen sich quantitative Maße zur Beurteilung eines Klassifikators ableiten. Häufig ist die Klassifikation binärer Natur, d. h. es gibt nur zwei mögliche Klassen. Die hier diskutierten Gütemaße beziehen sich ausschließlich auf diesen Fall. Solche binäre Klassifikationen werden häufig in Form einer Ja/Nein-Frage formuliert: Leidet ein Patient an einer bestimmten Krankheit oder nicht? Ist ein Feuer ausgebrochen oder nicht? Nähert sich ein feindliches Flugzeug oder nicht? Bei Klassifikationen dieser Art gibt es zwei mögliche Arten von Fehlern: Ein Objekt wird der ersten Klasse zugeordnet, obwohl es der zweiten angehört, oder umgekehrt. Die hier beschriebenen Kennwerte bieten dann eine Möglichkeit, die Zuverlässigkeit des zugehörigen Klassifikators (Diagnoseverfahren, Feuermelder, Fliegerradar) zu beurteilen. Ja-Nein-Klassifikationen weisen Ähnlichkeiten zu statistischen Tests auf, bei denen zwischen einer Nullhypothese und einer Alternativhypothese entschieden wird. Ein Test soll kranke und gesunde Menschen voneinander unterscheiden. Jeder Mensch wird durch einen Punkt dargestellt, der links (krank) bzw. rechts (gesund) der schwarzen Linie liegt. Die Punkte im Oval sind die von dem Test als krank klassifizierten Menschen. Die Farben entsprechen den vier Fällen, die bei dieser Klassifikation auftreten können.Um einen Klassifikator zu bewerten, muss man ihn in einer Reihe von Fällen anwenden, bei denen man zumindest im Nachhinein Kenntnis über die "wahre" Klasse der jeweiligen Objekte hat. Ein Beispiel für so einen Fall ist ein medizinischer Labortest, mit dem festgestellt werden soll, ob eine Person eine bestimmte Krankheit hat. Später wird durch aufwändigere Untersuchungen fe von Quelle: Wikipedia

Produktdetails

Einband:
Kartoniert
Seitenzahl:
68
Erschienen:
2014-12-12
Sprache:
Deutsch
EAN:
9781158968107
ISBN:
1158968108
Verlag:
Gewicht:
152 g
Auflage:
-
Alle gebrauchten Bücher werden von uns handgeprüft.
So garantieren wir Dir zu jeder Zeit Premiumqualität.

Über den Autor


Entdecke mehr vom Verlag


Neu
20,02 €
Entdecke mehr zum Thema
frontend/listing/product-box/box-product-slider.tpl
frontend/listing/product-box/box-product-slider.tpl
frontend/listing/product-box/box-product-slider.tpl
frontend/listing/product-box/box-product-slider.tpl