Deep Reinforcement Learning for Wireless Communications and Networking
Kurzinformation
inkl. MwSt. Versandinformationen
Lieferzeit 1-3 Werktage
Lieferzeit 1-3 Werktage
Beschreibung
Deep Reinforcement Learning for Wireless Communications and Networking Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice. The book also covers diverse applications of DRL to address various problems in wireless networks, such as caching, offloading, resource sharing, and security. The authors discuss open issues by introducing some advanced DRL approaches to address emerging issues in wireless communications and networking. Covering new advanced models of DRL, e.g., deep dueling architecture and generative adversarial networks, as well as emerging problems considered in wireless networks, e.g., ambient backscatter communication, intelligent reflecting surfaces and edge intelligence, this is the first comprehensive book studying applications of DRL for wireless networks that presents the state-of-the-art research in architecture, protocol, and application design. Deep Reinforcement Learning for Wireless Communications and Networking covers specific topics such as: * Deep reinforcement learning models, covering deep learning, deep reinforcement learning, and models of deep reinforcement learning * Physical layer applications covering signal detection, decoding, and beamforming, power and rate control, and physical-layer security * Medium access control (MAC) layer applications, covering resource allocation, channel access, and user/cell association * Network layer applications, covering traffic routing, network classification, and network slicing With comprehensive coverage of an exciting and noteworthy new technology, Deep Reinforcement Learning for Wireless Communications and Networking is an essential learning resource for researchers and communications engineers, along with developers and entrepreneurs in autonomous systems, who wish to harness this technology in practical applications. von Hoang, Dinh Thai;Huynh, Nguyen Van;Nguyen, Diep N;Hossain, Ekram;Niyato, Dusit;
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
- Hardcover
- 272 Seiten
- Erschienen 2022
- Wiley-IEEE Press
- Hardcover
- 329 Seiten
- Erschienen 2022
- Apress
- Gebunden
- 500 Seiten
- Erschienen 2005
- Cambridge University Pr.
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley & Sons
- Hardcover
- 464 Seiten
- Erschienen 2021
- Wiley
- Hardcover
- 212 Seiten
- Erschienen 2010
- Springer
- Hardcover
- 268 Seiten
- Erschienen 2010
- MIT Press
- Hardcover
- 250 Seiten
- Erschienen 2023
- Wiley-IEEE Press
- Taschenbuch
- 304 Seiten
- Erschienen 2020
- BPB Publications
- Hardcover
- 852 Seiten
- Erschienen 2016
- Springer
- Hardcover
- 200 Seiten
- Erschienen 2005
- Springer
- Hardcover
- 432 Seiten
- Erschienen 2023
- Wiley-IEEE Press
- Hardcover
- 208 Seiten
- Erschienen 2010
- Springer
- Hardcover
- 352 Seiten
- Erschienen 2020
- Wiley-Scrivener
- Hardcover
- 392 Seiten
- Erschienen 2015
- Wiley