
Mathematical Statistics with Resampling and R
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book bridges the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. This groundbreaking book shows how to apply modern resampling techniques to mathematical statistics. Extensively class-tested to ensure an accessible presentation, Mathematical Statistics with Resampling and R utilizes the powerful and flexible computer language R to underscore the significance and benefits of modern resampling techniques. The book begins by introducing permutation tests and bootstrap methods, motivating classical inference methods. Striking a balance between theory, computing, and applications, the authors explore additional topics such as: * Exploratory data analysis * Calculation of sampling distributions * The Central Limit Theorem * Monte Carlo sampling * Maximum likelihood estimation and properties of estimators * Confidence intervals and hypothesis tests * Regression * Bayesian methods Throughout the book, case studies on diverse subjects such as flight delays, birth weights of babies, and telephone company repair times illustrate the relevance of the real-world applications of the discussed material. Key definitions and theorems of important probability distributions are collected at the end of the book, and a related website is also available, featuring additional material including data sets, R scripts, and helpful teaching hints. Mathematical Statistics with Resampling and R is an excellent book for courses on mathematical statistics at the upper-undergraduate and graduate levels. It also serves as a valuable reference for applied statisticians working in the areas of business, economics, biostatistics, and public health who utilize resampling methods in their everyday work.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
LAURA CHIHARA, PhD, is Professor of Mathematics at Carleton College. She has extensive experience teaching mathematical statistics and applied regression analysis. She has supervised undergraduates working on statistics projects for local businesses and o
- Gebunden
- 456 Seiten
- Erschienen 2017
- Springer
- paperback
- 936 Seiten
- Erschienen 2007
- Cengage Learning
- Gebunden
- 628 Seiten
- Erschienen 2014
- Springer
- Hardcover -
- Erschienen 2015
- Springer Spektrum
- hardcover
- 192 Seiten
- Erschienen 2021
- Wiley
- Kartoniert
- 558 Seiten
- Erschienen 2014
- Pearson Studium
- hardcover
- 398 Seiten
- Erschienen 2020
- Chapman and Hall/CRC
- Kartoniert
- 269 Seiten
- Erschienen 2010
- Vahlen
- Taschenbuch
- 216 Seiten
- Erschienen 1986
- Wspc
- Kartoniert
- 308 Seiten
- Erschienen 2005
- Oldenbourg Wissenschaftsverlag
- Hardcover
- 404 Seiten
- Erschienen 2016
- Springer
- Kartoniert
- 355 Seiten
- Erschienen 2017
- O'Reilly
- Hardcover
- 480 Seiten
- Erschienen 1980
- Wiley-Interscience
- hardcover
- 192 Seiten
- Erschienen 2012
- Springer
- Klappenbroschur
- 351 Seiten
- Erschienen 2020
- De Gruyter Oldenbourg
- Kartoniert
- 276 Seiten
- Erschienen 2020
- Routledge
- hardcover
- 396 Seiten
- Erschienen 2014
- Wiley-Interscience
- Kartoniert
- 357 Seiten
- Erschienen 2014
- Routledge