Serial Rings
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The main theme in classical ring theory is the structure theory of rings of a particular kind. For example, no one text book in ring theory could miss the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to consider a requirement of a lattice-theoretical type, other than being Artinian or Noetherian, the most natural is uni-seriality. Here a module M is called uni-serial if its lattice of submodules is a chain, and a ring R is uni-serial if both RR and RR are uni-serial modules. The class of uni-serial rings includes commutative valuation rings and closed under homomorphic images. But it is not closed under direct sums nor with respect to Morita equivalence: a matrix ring over a uni-serial ring is not uni-serial. There is a class of rings which is very close to uni-serial but closed under the constructions just mentioned: serial rings. A ring R is called serial if RR and RR is a direct sum (necessarily finite) of uni-serial modules. Amongst others this class includes triangular matrix rings over a skew field. Also if F is a finite field of characteristic p and G is a finite group with a cyclic normal p-Sylow subgroup, then the group ring FG is serial. von Puninski, G.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Gebunden
- 590 Seiten
- Erschienen 2017
- Wiley-VCH
- Gebunden
- 63 Seiten
- Erschienen 2013
- Splitter-Verlag
- Gebunden
- 445 Seiten
- Erschienen 2012
- Springer
- paperback
- 288 Seiten
- Erschienen 2004
- EVAN MOOR EDUC PUBL
- hardcover
- 536 Seiten
- Erschienen 2018
- Wiley-VCH
- hardcover
- 552 Seiten
- Erschienen 1996
- CRC Press
- hardcover
- 694 Seiten
- Erschienen 2001
- Springer
- hardcover
- 784 Seiten
- Erschienen 2016
- Wiley
- Gebunden
- 330 Seiten
- Erschienen 2005
- Wiley-VCH
- hardcover
- 561 Seiten
- Erschienen 1987
- Pro Heraldica
- Gebunden
- 234 Seiten
- Erschienen 2018
- Wiley-VCH




