Operational Calculus
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Since the publication of an article by G. DOETSCH in 1927 it has been known that the Laplace transform procedure is a reliable sub stitute for HEAVISIDE'S operational calculus*. However, the Laplace transform procedure is unsatisfactory from several viewpoints (some of these will be mentioned in this preface); the most obvious defect: the procedure cannot be applied to functions of rapid growth (such as the 2 function t ~ exp (t )). In 1949 JAN MIKUSINSKI indicated how the un necessary restrictions required by the Laplace transform can be avoided by a direct approach, thereby gaining in notational as well as conceptual simplicity; this approach is carefully described in MIKUSINSKI'S textbook "Operational Calculus" [M 1J. . The aims of the present book are the same as MIKUSINSKI'S [M 1J: a direct approach requiring no un-necessary restrictions. The present operational calculus is essentially equivalent to the "calcul symbolique" of distributions having left-bounded support (see 6.52 below and pp. 171 to 180 of the textbook "Theorie des distributions" by LAURENT SCHWARTZ). von Krabbe, Gregers
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Kartoniert
- 255 Seiten
- Erschienen 2017
- UVK Verlagsgesellschaft mbH
- hardcover
- 1142 Seiten
- Erschienen 2009
- Houghton Mifflin
- hardcover
- 797 Seiten
- Erschienen 1981
- Academic Press Inc
- Gebunden
- 538 Seiten
- Erschienen 2018
- Springer
- Hardcover -
- Erschienen 2011
- Springer
- Hardcover
- 192 Seiten
- Erschienen 2014
- Oxford University Press
- Kartoniert
- 300 Seiten
- Erschienen 2015
- Springer Gabler
- hardcover -
- Erschienen 1996
- Pearson
- hardcover
- 640 Seiten
- Erschienen 1993
- Brooks/Cole
- hardcover
- 366 Seiten
- Erschienen 2022
- Birkhäuser
- paperback -
- Erschienen 2013
- Aops Inc
- hardcover
- 292 Seiten
- Erschienen 2006
- American Mathematical Society




